Se si guardano le strutture naturali dall'alto, in modo da averne una visione bidimensionale, ci si rende subito conto che possono avere tre diversi tipi di struttura:
1. Regolare, con simmetria poligonale, come gli esagoni dei nidi d'ape, oppure circolare, come i all circles of the same diameter frustuli of diatoms.
This is where repetitive tasks are necessary, as the accumulation of nutritional products in cells, for bee nests, or the filtering of sunlight to hold in a single frequency, and therefore maximize the return, as in the case of diatoms. Sometimes the two requirements penetrate, and then you have double symmetry overlapping, circular and hexagonal, as in the diatom in the picture (left).
2. Statistically irregular, such as cell structures of plants
parenchyma, which is mainly concentrated on the pulp of fruits and tubers are formed by polygonal cells with an average of 12.8 sides, which means in pratica che la terza dimensione comincia ad avere una sua importanza, e i "difetti" che si generano nella crescita del tessuto cellulare, man mano che interagisce con l'ambiente, vengono "corretti" con ispessimenti ed assottigliamenti delle pareti cellulari, come abbiamo già visto in precedenza in questo blog.
3. Frattali, laddove la struttura sia totalmente cristallina e quindi non tolleri nessuna pur piccola modificazione o deformazione in corso d'opera, come nel caso dei fiocchi di neve. La caratteristica della simmetria frattale è quella dell'infinita ripetizione nello spazio in tutte le direzioni, anche ad un livello nanometrico, dovuta all'elevato livello di curvatura delle superfici. E' interessante notare come in realtà le fractal structures, such as the Kagome structure in the picture (right) are always formed macroscopically by a simple set of symmetries.
follows from these considerations, we see in reality what happens is a gradual transition from two-dimensional to three-dimensional in nature, and therefore those that seem apparently three philosophies are actually the same: the nature of the plan goes to space through an infinite number of intermediate stages. And, to be more precise, does not stop at three dimensions, but in fact goes even further in size, which can be infinitely small (or tablets) in the shape of the object. But quest'inseguimento for the infinite nanoscale would lead us to a natural object may be too far away (for now).
What I have to note, however, is that the sum of different symmetries, such as circular and polygonal, it's just a different way of looking at the overlap between linear and helical structures, as we said before. The net result, however it is interpreted, is that nature is not explained by the three geometric dimensions.
0 comments:
Post a Comment